โรคที่เกิดจากการติดเชื้อจากเชื้อรา (Fungal / Candidiasis) / ช่องคลอดอักเสบจากการติดเชื้อรา (Vulvovaginal Candidiasis)

Aspergillosis – Fungal Diseases: Clemons KV, Danielson ME, et al, “Whole glucan particles as a vaccine against murine Aspergillosis.” J Med Microbiol, 63(Pt 12):1750-9. PMID 25288643. Dec 2014. Quote: “Vaccination with … Saccharomyces cerevisiae protects against experimental infection by pathogenic fungi of five genera. …Vaccination with whole glucan particles…proved protective against systemic aspergillosis, equivalent to that of Saccharomyces cerevisiae, supporting the potential of particulate B-glucans, alone or conjugated, as vaccines against aspergillosis.” Note: Saccharomyces cerevisiae in research is particulate Beta 1,3/1,6 glucan.

Anti-Fungal Vaccines: Liao GZhou ZLiao JZu LWu QGuo Z, “6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines”, ACS Infect Dis Feb 12;2(2):123-31. 2016. PMID 27624963. Quoteβ-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. … Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.”  Note: Epitope: the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells.

Anti-Fungal Vaccines: Clemons KV, et al; “Whole glucan particles as a vaccine against murine aspergillosis.” J Med Microbiol 63(Pt 12):1750-9; PMID 25288643. Dec 2014. Quote: “Vaccination with heat-killed Saccharomyces cerevisiae (HKY)[beta 1,3 glucan] protects against experimental infection by pathogenic fungi of five genera. …supporting the potential of particulate B-glucans, alone or conjugated as vaccines against aspergillosis.” Note: Aspergillosis is a condition in which certain fungi infect the tissues. It most commonly affects the lungs.

Anti-Fungal Immunity: Berner VK, duPre S, Redelman D, Hunter KW, “Microparticulate B-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro,” Cellular Immunology, ( http://dx.doi.org/10.1016/j.celimm.2015.10.007 ) 2015; U of Nevada School of Medicine, Dept of Microbiology. PMID:26549577 Quote: “The interaction between B-glucan and its receptors serves as an activating signal that promotes anti-fungal immunity, but fungal B-glucan also has a long history of use as an adjuvant to promote immune responses to tumors and other microorganisms…Microparticulate B-glucan (MG) was shown to exhibit adjuvant activity when conjugated to a test vaccine antigen. ….Recent studies have confirmed that B-glucan particles can be used to deliver vaccine antigen for oral immunization.

Candida albicans, Staphyloccoccus  and Infectious Challenge: Rice PJAdams ELOzment-Skelton TGonzales AGoldman MP,Lockhart BEBarker LABreuel KFDeponti WKKalbfleisch JHEnsley HEBrown GDGordon SWilliams DL.; “Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge.” East Tennessee State University. J Pharmacol Exp Ther. Jun 23, 2005. Quote: ”Oral glucan administration also increased survival in mice challenged with Staphylococcus aureus or Candida albicans …[and] increase[s] IL-12 expression and induce[s] protection against infectious challenge.”

Candida albicansGantner BNSimmons RMUnderhill DM. “Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments”; The Department of Immunology, University of Washington, Seattle, WA, Embo J; 23:24(6):1277.86, Mar 2005; Quote: “Dectin-1 is a receptor that binds beta-glucans and is important for macrophage phagocytosis of fungi. … the normal mechanisms of yeast budding and cell separation create permanent scars which expose sufficient beta-glucan to trigger antimicrobial responses through Dectin-1, including phagocytosis and activation of reactive oxygen production [anti-oxidant – free radical neutralization].”

Candida Albicans: Browder IW., et al., “Modification of Post-Operative C. albicas Sepis by Glucan Immunostimulation,” Int. J. Immunopharmac.; 6:19-26. Dept of Surg and Physiol, Tulane U Sch of Med, LA;  PubMed 6724765. 1984. Quote: “Protection against C. albicans was observed in the glucan-treated groups. …glucan increased survival and reduced renal pathology associated with C. albicans challenge in the post-operative period. These observations suggest that Biologic Response Modifiers such as glucan may be effectively employed in patients who are at risk for post-operative infections.”

Candida Albicans: Janusz M.J., Austen K.F., Czop J.K.; “Phagocytosis of heat-killed blastophores of Candida albicans by human monocytes beta-glucan receptors.”  Immunology. 65:181-185. 1988.

Candidiasis: DiLuzio N.R., Williams D.L., Cook J.L., Hoffman E.O.; Protective effect of glucan in experimentally induced candidiasis; J Reticuloendothel Soc 53: 479-490, Pubmed 702473. 1978.

Candidiasis: Bonfim-Mendonca Pde S, et al; “B-Glucan Induces Reactive Oxygen Species Production in Human Neutrophils to Improve the Killing of Candida albicans and Candida glabrata Isolates from Vulvovaginal Candidiasis; PLoS One (Public Library of Science), 9(9):e107805. doi: 10.1371/journal.pone.0107805. eCollection 2014. Sep 17, 2014. Quote: “B-glucan significantly increased oxidant species production, suggesting that B-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal [microbe destroying] response of neutrophils for both of the species isolated from vulvovaginal candidiasis.”

Chromoblastomycosis – Fungal Skin Disease: Silva E, Azevedo CD, et al; “The use of glucan as immunostimulant in the treatment of a severe case of chromoblastomycosis” [chronic fungal skin disease]Dept. of Patologia [Pathology], U Federal do Maranhao Maranhao, Brazil; Mycoses, April 26, 2008; Quote: We report the case of an alternative treatment for a patient with a severe form of chromoblastomycosis that responded poorly to the traditional antifungal therapy. We hereby show, in this study, the improvement of lesions after treatment with itraconazole associated with an intra muscular administration of glucan. We observed that the regression of lesions was associated with an improvement of the cellular immune response.”

Fungal Defense: Batbayar S, Lee DH, Kim HW, “Immunomodulation of Fungal B-Glucan in Host Defense Signaling by Dectin-1,” Biomol Ther: 20((5): 433-445. Pubmed 3762275. Sept 2012. Quote“…Fungal and particulate B-glucans, despite their large size, can …activate systemic immune responses to overcome the fungal infection…. The sampled B-glucans function…on the front line against fungal infection, and have been exploited in cancer treatments to enhance the systemic immune function. …In mammals, B-glucans have been shown to induce diverse biological activities against fungal infections and tumors. …As a source of soluble fiber, B-glucan may lessen the risk of heart-related diseases by lowering total cholesterol and LDL cholesterol.”

Fungal  Defense: Goodridge H, Reyes C, Becker C et al; “Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse'” Nature, Vol 472 p 471-475, April 28, 2011. * Quote: “…Dectin-1 is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects b-glucans in fungal cell walls and triggers direct cellular antimicrobial activity… . Despite its ability to bind both soluble and particulate B-glucan polymers, Dectin-1 signaling is only activated by particulate B-glucans. …Studies in mice and humans have demonstrated an important role for Dectin-1 in anti-fungal defense. Dectin-1 signals activate anti-microbial phagocytosis, production of ROD [reactive oxygen species] and inflammatory innate immune responses, and influences the development of adaptive immunity…”

Fungal Diseases: Rondanelli M, et al”The Biological activity of beta-glucans”; Minerva Medical; 100(3):237-245; Pub Med 19571787;  Jun 2009; Quote: “…Beta-glucans have studied for their hypocholesterolemic effects; these mechanisms include: reducing the intestinal absorption of cholesterol and bile acids by binding to glucans; shifting the liver from cholesterol syntheses to bile acid production; and fermentation by intestinal bacteria to short-chain fatty acids, which are absorbed and inhibit hepatic cholesterol syntheses. …beta-1,3-glucans improve the body’s immune system defense against foreign invaders by enhancing the ability of macrophages, neutrophils and natural killer cells to respond to and fight a wide range of challenges such as bacteria, viruses, fungi, and parasites. …there is renewed interest in the potential usefulness of beta-glucan as a radioprotective drug for chemotherapy, radiation therapy and nuclear emergencies, particularly because glucan can be used not only as a treatment, but also as a prophylactic [taken in advance for protection].”

Fungal Diseases – Aspergillosis: Clemons KV, Danielson ME, et al, “Whole glucan particles as a vaccine against murine Aspergillosis.” J Med Microbiol, 63(Pt 12):1750-9. PMID 25288643. Dec 2014. Quote: “Vaccination with … Saccharomyces cerevisiae protects against experimental infection by pathogenic fungi of five genera. …Vaccination with whole glucan particles…proved protective against systemic aspergillosis, equivalent to that of Saccharomyces cerevisiae, supporting the potential of particulate B-glucans, alone or conjugated, as vaccines against aspergillosis.” Note: Saccharomyces cerevisiae in research is particulate Beta 1,3/1,6 glucan.

Fungal Diseases: Silva E, Azevedo CD, et al; “The use of glucan as immunostimulant in the treatment of a severe case of chromoblastomycosis” [chronic fungal skin disease]Dept. of Patologia [Pathology], U Federal do Maranhao Maranhao, Brazil; Mycoses, April 26, 2008; Quote: “We report the case of an alternative treatment for a patient with a severe form of chromoblastomycosis [chronic fungal skin disease] that responded poorly to the traditional antifungal therapy. We hereby show, in this study, the improvement of lesions after treatment with itraconazole associated with an intra muscular administration of glucan. We observed that the regression of lesions was associated with an improvement of the cellular immune response.”

Fungal Diseases:  Schorey JS, Lawrence C; “The pattern recognition receptor Dectin-1: from fungi to mycobacteria.” Curr Drug Targets. 9(2):123-9; Dept of Bilogical Sciences, U of Notre Dame. Feb 9, 2008. Quote: The ability of the innate immune system to quickly recognize and respond to an invading pathogen is essential for controlling the infection. For this purpose, cells of the immune system express receptors which recognize evolutionarily conserved structures expressed by various pathogens but absent from host cells. …Dectin -1 is a type II transmembrane protein which binds beta-1,3 and beta-1,6 glucans. It [Dectin-1`] is expressed on most cells of the innate immune system and has been implicated in phagocytosis as well as killing of fungi by macrophages, neutrophils and dendritic cells.”

Fungal Diseases and Pathogens: Hunter KW, Jr. Berner MD, Sura ME Alvea BN, “IFN-gamma primes macrophages for enhanced TNF-alpha expression in response to stimulatory and non-stimulatory amounts of microparticulate beta-glucan.,” Immunol Letters ; 15:98(1): 115-22. Department of Microbiology and Immunology, University of Nevada School of Medicine, Applied Research Facility, MS-199, Reno, NV 89557, USA. April 2005, Quote:  …”we have tested a new microparticulate form of beta-(1–> 3)-D-glucan (MG) from Saccharomyces cerevisiae for its ability to induce proinflammatory cytokine secretion in mouse peritoneal macrophages in vitro, and we have examined the effect of IFN-gamma. MG was rapidly phagocytized by peritoneal macrophages, and these MG-treated macrophages upregulated TNF-alpha, IL-6, and IL-1beta mRNAs and secreted these proinflammatory cytokines. These data suggest that a synergy between IFN-gamma and beta-glucan may have evolved to lower the threshold of sensitivity of the innate immune response to fungal pathogens.” [respond faster in attacking fungal pathogens – mycotoxins]

Fungal Infection: Sainkhuu B, Lee DH, Kim HW, “Immunomodulation of Fungal B-Glucan in Host Defense Signaling by Dectin-1”, Biomol Ther (Seoul) 20(05):433-445. PMC 3762275 Sept 2012, Quote: “Fungal and particulate B-glucans… can be taken up by the M cells of Peyer’s patches, and interact with macrophages or dendritic cells and activate systemic immune responses against fungal infections.  The …β-glucans function as pathogen-associated molecular patterns (PAMPs).  Dectin-1 receptor systems have been incorporated as the PRRs [pattern recognition receptors] of β-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function.”  Note: The innate immune cells in error think beta glucan is pathogenic fungus (PAMP) and respond even though beta glucan is not a pathogenic health hazard; thus creating an immune response to kill actual pathogenic fungus.

Fungal Diseases and Immunity: Brown G D, Gordon Siamon; “Fungal B-Glucans and Mammalian Immunity.” Sir William Dunn Sch of Pathology, U of Oxford, UK, Immunity, Vol19, 311-316, 2003.  Quote: B-Glucans are structural cell wall polymers of many fungi which possesses  immunomodulatory activities. …The innate immune response is essential for the control of fungal infections, and there is increasing evidence that B-glucans are involved in initiating many aspects of this response.  The recognition of fungal pathogens occurs through both opsonic (mainly complement) and nonopsonic mechanisms, and as conserved structural components, B-glucans…play an important role in the non-opsonic recognition of these [fungal] pathogens. 

Indeed, many of the B-glucan receptors…have been shown to contribute to the recognition and phagocytosis of these organisms [fungal pathogens].  … B-glucans, especially in particulate form, can produce proinflammatory and antimicrobial responses through the TLRs and Dectin-1 [cell receptors for B-glucan]. Many of these responses are required for the control of fungal infections, such as the production of TNF-Alpha, and is an essential early cytokine required for the control of infections with C. albicans, A. fumigatus, C. neoformans, and H capsulatum. This is also true for IL-12, another important anti-fungal cytokine… . Thus B-glucans appear to have an important role in the innate immune response to fungal pathogens and in initiating a protective adaptive response.”

Fungal Diseases: Browder IW., Williams D., Pretus H., et al; “Beneficial Effect of Enhanced Macrophage Function in the Trauma Patients.” Ann. Surg.;  Vol 211: 605-613. Dept of Surg and Physiol, Tulane U Sch of Med, LA and Istituto Di Chirurgia D’Urgenza, U of Torino, Torino, Italy.* 1990. Quote: “Previous studies have demonstrated that glucan, a beta-1,3-linked glucopyranose polymer, isolated from the inner cell wall of Saccharomyces cerevisiae, is a potent  macrophage stimulant and is beneficial in the therapy of experimental bacterial, viral, and fungal diseases. “

Fungal Diseases: Williams D.L., Browder I. and DiLuzio N.R., “Soluble phosphorylated glucan: methods and compositions for wound healing,”  U.S. Patent 4975421, Issued Dec 4, 1990. Quote: “The soluble phosphorylated glucans are useful for promoting the wound healing process. The soluble phosphorylated glucans are also useful for prophylactic and therapeutic applications against neoplastic, bacteria, viral, fungal and parasitic diseases.” 

Fungal Diseases: Browder IW. Williams DL, Di  Luzio NR, et al, “Modification of postoperative C-albicans sepsis by glucan immunostimulation.” Int J Immunopharmacol, PubMed 6724765, 6:19-26, 1984. Quote: “…glucan increased survival and reduced renal pathology associated with C. albicans challenge in the post operative period. These observations suggest that Biologic Response Modifiers such as glucan may be effectively employed in patients who are at risk for post operative infections.”

Fungal Diseases: Williams DL, Cook JA, Di Luzio NR et al, “Protective effect of glucan in experimentally induced candidiasis.” J Reticuoendothel Soc, Pubmed 702473, Jun, 23(6):479-490, 1978

Fungal Infection: Jamas S, Easson D, Ostroff G: “Underivatilized aqueous soluble beta (1,3) glucan, composition and method of making same.” U.S. Patent Application 20020032170, March 14, 2002. Quote: The use of soluble and insoluble beta glucans alone or as vaccine adjuvants for viral and bacterial antigens has been shown in animal models to markedly increase resistance to a variety of bacterial, fungal, protozoan and viral infections.”

Fungal Infection: DiLuzio N.R.,”Immunopharmacology of glucan: a broad spectrum enhancer of host defense mechanisms,” Trends in Pharmacol. SCI., 4:344-347. Dept of Physiology, Tulane U, New Orleans, LA.* 1983. Quote: (p347) “The broad spectrum of immunopharmacological activities of glucan includes not only the modification of certain bacterial, fungal, viral and parasitic infections, but also inhibition of tumor growth.”

Fungal Pathogen Control: Brown G D, Gordon Siamon; “Fungal B-Glucans and Mammalian Immunity.” Sir William Dunn Sch of Pathology, U of Oxford, UK, Immunity, Vol19, 311-316, 2003.  Quote: “…the recognition of B-glucans in both [vertebrate and invertebrate] systems results in the triggering of immune responses, designed primarily for the control of fungal pathogens.

Fungal Pathogen Vaccine: Torosantucci A, et al; “A novel glyco-conjugate vaccine against fungal pathogens.” J Exp Med, 202(5):597-606. PMID: 16147975 PMCID: PMC2212864. Sep 2005. Quote: ….”Anti-beta glucan antibodies bound to C. albicans hyphae and inhibited their growth in vitro….Remarkably, Lam-CRM-vaccinated mice also were protected from a lethal challenge with conidia of Aspergillus fumigatus… .”  Note: LAM is laminarin, an immunogenic beta glucan

Fungicidal Activity: Pelizon AC, Kaneno R, et al; “Immunomodulatory activities associated with beta-glucan derived from Saccharomyces cerevisiae.”  Dept of Microbiology and Immunology, Inst of Biosciences, State U of Sao Paulo Brazil. Physio Res. 54(5):557-64 2005. Quote: “B-glucan enhances fungicidal activity against P. brasiliensis...B-glucan primes for higher IL12 and TNF-alpha production….B-glucan increases NK [Natural Killer white immune cells]. …The lower dose [20 mg/ml] was more effective to increase NK and fungicidal activity….Together, our results suggest that B-glucan derived from S. cerevisiae is able to improve Immune functions that contribute to P. brasiliensis elimination.”  Note: The mitosporic fungus, Paracoccidioides brasiliensis, is the causative agent of a true systemic (endemic) mycosis [fungus] called paracoccidioidomycosis (PCM) common in parts of South America.

Vulvovaginal Candidiasis: Bonfim-Mendonca Pde S, et al; “B-Glucan Induces Reactive Oxygen Species Production in Human Neutrophils to Improve the Killing of Candida albicans and Candida glabrata Isolates from Vulvovaginal Candidiasis; PLoS One (Public Library of Science), 9(9):e107805. doi: 10.1371/journal.pone.0107805. eCollection 2014. Sep 17, 2014. Quote: “B-glucan significantly increased oxidant species production, suggesting that B-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal [microbe destroying] response of neutrophils for both of the species [Candida albicans and Candida glabrata] isolated from vulvovaginal candidiasis.”


 

Comments are closed.